- Associated Press - Sunday, October 23, 2011

SAN JOSE, CALIF. (AP) - When a computer attack hobbled Iran’s unfinished nuclear power plant last year, it was assumed to be a military-grade strike, the handiwork of elite hacking professionals with nation-state backing.

Yet for all its science fiction sophistication, key elements have now been replicated in laboratory settings by security experts with little time, money or specialized skill. It is an alarming development that shows how technical advances are eroding the barrier that has long prevented computer assaults from leaping from the digital to the physical world.

The techniques demonstrated in recent months highlight the danger to operators of power plants, water systems and other critical infrastructure around the world.

“Things that sounded extremely unlikely a few years ago are now coming along,” said Scott Borg, director of the U.S. Cyber Consequences Unit, a nonprofit group that helps the U.S. government prepare for future attacks.

While the experiments have been performed in laboratory settings, and the findings presented at security conferences or in technical papers, the danger of another real-world attack such as the one on Iran is profound.

The team behind the so-called Stuxnet worm that was used to attack the Iranian nuclear facility may still be active. New malicious software with some of Stuxnet’s original code and behavior has surfaced, suggesting ongoing reconnaissance against industrial control systems.

And attacks on critical infrastructure are increasing. The Idaho National Laboratory, home to secretive defense labs intended to protect the nation’s power grids, water systems and other critical infrastructure, has responded to triple the number of computer attacks from clients this year over last, the U.S. Department of Homeland Security has revealed.

For years, ill-intentioned hackers have dreamed of plaguing the world’s infrastructure with a brand of sabotage reserved for Hollywood. They’ve mused about wreaking havoc in industrial settings by burning out power plants, bursting oil and gas pipelines, or stalling manufacturing plants.

But a key roadblock has prevented them from causing widespread destruction: they’ve lacked a way to take remote control of the electronic “controller” boxes that serve as the nerve centers for heavy machinery.

The attack on Iran changed all that. Now, security experts _ and presumably, malicious hackers _ are racing to find weaknesses. They’ve found a slew of vulnerabilities.

Think of the new findings as the hacking equivalent of Moore’s Law, the famous rule about computing power that it roughly doubles every couple of years. Just as better computer chips have accelerated the spread of PCs and consumer electronics over the past 40 years, new hacking techniques are making all kinds of critical infrastructure _ even prisons _ more vulnerable to attacks.

One thing all of the findings have in common is that mitigating the threat requires organizations to bridge a cultural divide that exists in many facilities. Among other things, separate teams responsible for computer and physical security need to start talking to each other and coordinate efforts.

Many of the threats at these facilities involve electronic equipment known as controllers. These devices take computer commands and send instructions to physical machinery, such as regulating how fast a conveyor belt moves.

They function as bridges between the computer and physical worlds. Computer hackers can exploit them to take over physical infrastructure. Stuxnet, for example, was designed to damage centrifuges in the nuclear plant being built in Iran by affecting how fast the controllers instructed the centrifuges to spin. Iran has blamed the U.S. and Israel for trying to sabotage what it says is a peaceful program.

Security researcher Dillon Beresford said it took him just two months and $20,000 in equipment to find more than a dozen vulnerabilities in the same type of electronic controllers used in Iran. The vulnerabilities, which included weak password protections, allowed him to take remote control of the devices and reprogram them.

Story Continues →