Govt. gene sleuths stop superbug that killed 6

Question of the Day

Should Congress make English the official language of the U.S.?

View results

WASHINGTON (AP) - Over six frightening months, a deadly germ untreatable by most antibiotics spread in the nation’s leading research hospital. Pretty soon, a patient a week was catching the bug. Scientists at the National Institutes of Health locked down patients, cleaned with bleach, even ripped out plumbing _ and still the germ persisted.

By the end, 18 people harbored the dangerous germ, and six died of bloodstream infections from it. Another five made it through the outbreak only to die from the diseases that brought them to NIH’s world-famous campus in the first place.

It took gene detectives teasing apart the bacteria’s DNA to solve the germ’s wily spread, a CSI-like saga with lessons for hospitals everywhere as they struggle to contain the growing threat of superbugs.

It all stemmed from a single patient carrying a fairly new superbug known as KPC _ Klebsiella pneumoniae that resists treatment by one of the last lines of defense, antibiotics called carbapenems.

“We never want this to happen again,” said Dr. Tara Palmore, deputy hospital epidemiologist at the NIH Clinical Center.

Infections at health care facilities are one of the nation’s leading causes of preventable death, claiming an estimated 99,000 lives a year. They’re something of a silent killer, as hospitals fearful of lawsuits don’t like to publicly reveal when they outfox infection control _ yet no hospital is immune.

Wednesday, government researchers published an unusually candid account of last year’s outbreak, with some advice: Fast sequencing of a germ’s genome, its full DNA, may be essential. It can reveal how drug-resistant bacteria are spreading so that doctors can protect other patients.

“This is not an easy story to tell,” said Dr. Julie Segre, a senior investigator at NIH’s National Human Genome Research Institute. She led the genetic sleuthing that found the bug hiding in sink drains and, most chilling, even in a ventilator that had been cleaned with bleach.

Infection-control specialists at other hospitals called this detailed anatomy of an outbreak, published in the journal Science Translational Medicine, important to share.

“They were able to demonstrate that this sneaky little bug was able to stay alive and get transmitted in ways they hadn’t quite predicted before they had the detailed genetic information,” said Dr. Sara Cosgrove, associate hospital epidemiologist at Johns Hopkins University. “It’s very revealing.”

“Absolutely this could happen in any hospital,” said Dr. Deverick Anderson, co-director of a Duke University infection control network that advises smaller community hospitals.

“This is really exciting stuff, cutting-edge technology, to try and better understand how these infections get spread,” he added. That in turn may lead to new protections, important because “there’s something that’s very, very wrong about going to a hospital and becoming more ill.”

Normally, the Klebsiella bacteria live in human intestines and don’t harm people with healthy immune systems. But the multidrug-resistant strain named KPC has emerged over the past decade to become a fast-growing threat in intensive care units, spreading easily between very ill people and killing half of those it sickens. Worse, people can carry KPC without symptoms unless the germs slip into the urinary tract or bloodstream _ theirs or the person’s in the next bed _ through a catheter or surgical wound.

The 243-bed NIH Clinical Center, in Washington’s suburbs, is a unique hospital, only treating people enrolled in government research studies.

So on June 13, 2011, a research nurse carefully checked the medical records as a New York City hospital transferred a study participant who had become critically ill with a rare lung disease. The nurse found that the patient had KPC as well.

Story Continues →

View Entire Story

Copyright 2014 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Comments
blog comments powered by Disqus
TWT Video Picks