Continued from page 1

Brenner’s team built a robotic machine named RABiT — for “rapid automated biodosimetry tool” _ that can analyze those bloodspots quickly. The eventual goal is to be able to test 30,000 blood samples in a day. Brenner is working with Northrop Grumman to make the machinery smaller, even portable.

Brenner says federal approval is still a few years away but that the prototype could be used in an emergency if health officials shipped blood samples to his lab.

What about treatments?

Cells in the bone marrow and GI tract are extremely vulnerable to radiation. They overreact to what should be reparable damage and commit cellular suicide, says Dr. Andrei Gudkov of the Roswell Park Cancer Institute.

Gudkov’s team created a drug based on a protein from normal gut bacteria, named flagellin, that blocks some of the cellular destruction and also stimulates recovery of remaining cells. It dramatically improved the survival of monkeys treated up to 48 hours after they were zapped. And safety testing in 150 healthy people so far suggests the main side effect is a flulike reaction, Gudkov says. Cleveland BioLabs Inc. is doing further work needed for Food and Drug Administration evaluation.

BARDA’s Robinson says that closest to the emergency stockpile may be those cancer drugs that spur growth of infection-fighting blood cells. Later this year, his agency will begin a push for research to prove they could work similarly in a radiation emergency.

“There isn’t going to be a simple solution to any of this,” cautions Dr. Nelson Chao of Duke University’s countermeasures program, who also co-chairs the Radiation Injury Treatment Network. “There will be a lot of little steps to address the plethora of toxicities that come from radiation.”

___

EDITOR’s NOTE _ Lauran Neergaard covers health and medical issues for The Associated Press in Washington.

Online:

Columbia test: http://www.cmcr.columbia.edu/project1.html